Sujet bac 2017 - Série C

United Street Str
--

Partie A: vérification des compaissances

Question à réponse courte

Donne les caractéristiques d'une réaction d'estérification.

Texte à trous

Recopie et complète la phrase suivante par quatre des cinq mots ci-après : niveau; absorption; émission; hydrogène; supérieure.

Lorsque l'électron de l'atome d' \cdots passe d'un \cdots d'énergie inférieure à un niveau d'énergie \cdots , il y a \cdots de photons.

Appariement

Associe un élément-question de la colonne A à un élément-réponse correspondant de la colonne B. Exemple : $A_5=B_6$.

Colonne A	Colonne B
A_1 : acide carboxylique	$B_1: CH_3COOCH_3$
A_2 : base forte	$B_2: NH_3$
A_3 : esther	B ₃ : NaOH
A_4 : base faible	$B_4: C_6H_5COOH$

Partie B: application des comaissances

La glande thyroïde produit des hormones essentielles à différentes fonctions de l'organisme à partir de l'iode alimentaire. Pour vérifier la forme ou le fonctionnement de cette glande, on

procède à une scintigraphie thyroïdienne en utilisant les isotopes 131 $\binom{131}{53}$ I) ou 123 $\binom{123}{53}$ I) de l'iode.

Pour cette scintigraphie, un patient ingère une masse $m_0 = 10^{-6}$ g de l'isotope $^{131}_{53}$ I.

- 1 Calcule le nombre N_0 de noyaux radioactifs initialement présents dans la dose ingérée.
- 2 L'isotope $^{131}_{53}$ I est radioactif β^- . Écris l'équation de la désintégration.
- 3 La demi-vie ou la période de l'isotope $^{131}_{53}$ I vaut T=8,0 jours.
 - a. Établis l'activité A à la date t en fonction de T, A_0 et t.
 - **b.** Calcule l'activité A_0 de l'échantillon $^{131}_{53}$ I à l'instant initial.
 - c. Calcule l'activité A à l'instant où l'examen est pratiqué, c'est à dire 5 heures après l'ingestion de l'iode radioactif $^{131}_{53}$ I.

On donne : $N_A = 6,02 . 10^{23} \, \mathrm{mol}^{-1}$; $\mathrm{M}(^{131}_{53}\mathrm{I}) \neq 131 \, \mathrm{g/mol}$. Extrait du tableau périodique : $_{51}\mathrm{Sb}$; $_{52}\mathrm{Te, th}$, $_{53}\mathrm{I}$, $_{54}\mathrm{Xe}$; $_{55}\mathrm{Cs}$.

PHYSIQUE 12 points ___

Partie A : vérification des connaissances

1 Questions à choix multiples

Choisis la bonne réponse parmi les propositions suivantes :

a. La période d'un pendule simple dépend :

a₁: de la masse du pendule

 $\mathbf{a_2}$: de la longueur du pendule

a₃: de la tension du fil

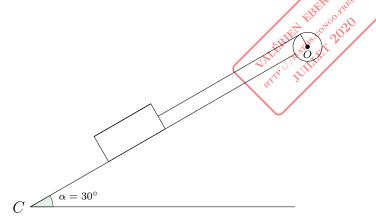
 ${\bf b.}$ Dans un circuit électrique à la résonance, l'intensité efficace du courant est :

 $\mathbf{b_1}$: minimale

 $\mathbf{b_2}$: nulle

 $\mathbf{b_3}$: maximale

2 Questions à alternative vrai ou faux


Réponds par vrai ou faux aux affirmations suivantes. Exemple : 2. e = vrai.

- 2. a. La cinématique étudie les mouvements des corps en tenant compte des forces qui les produisent.
- 2. b. Un ébranlement transversal se propage parallèlement à sa direction.

- 2. c. Un système en mouvement de chute libre n'est soumis qu'à son poids.
- 2. d. La dualité explique l'aspect corpusculaire et l'aspect ondulatoire de la lumière.

Partie B: application des connaissances

Un corps A de masse M=1 kg peut glisser sur un plan incliné dont la ligne de plus grande pente fait un angle de $\alpha=30^\circ$ avec le plan horizontal. Les forces de frottement qui agissent sur le corps A sont équivalentes à une force unique \overrightarrow{f} parallèle au déplacement et de sens contraire, d'intensité égale au dixième du poids $(f=\frac{1}{10}P)$. Le corps A est relié à un fil enroulé sur un cylindre et fixé à celui-ci. Ce cylindre de rayon r=6 cm est mobile sans frottement autour d'un axe horizontal O passant par son axe de symétrie et a un moment d'inertie J=9. $10^{-4} {\rm Kg \cdot m^2}$.

- 1 On lâche le corps.
 - a. Donne l'expression de l'accélération du centre de gravité de A.
 - **b.** Déduis la nature du mouvement de A.
- 2 Calcule la tension T du fil.
- 3 Après un parcours de 2 m sur le plan incliné, le fil reliant A au cylindre est coupé.
 - a. Calcule la vitesse du corps A à l'issue du parcours de 2 m.
 - **b.** Calcule la nouvelle valeur a' de l'accélération du corps A.

On donne : $g = 9.8 \,\text{m/s}^2$.

Partie C: résolution d'un problème

On veut déterminer le rendement d'une cellule photoélectrique au césium. Pour cela, on dispose d'une cellule photoélectrique qui reçoit un rayonnement lumineux monochromatique de longueur d'onde $\lambda=0,4\,\mu\mathrm{m}$. La longueur d'onde seuil vaut $\lambda_0=0,66\,\mu\mathrm{m}$.

- 1 Calcul, en joules, le travail d'extraction W_0 d'un électron de la cathode.
- 2 Calcule, en joules, l'énergie d'un photon lumineux W, qui arrive sur la cathode.
- Calcule l'énergie cinétique maximale d'un électron émis par la cathode. Déduis sa vitesse.
- 4 Le courant photoélectrique a une intensité de saturation égale à $2,4 \times 10^{-9}$ A.

- **4. 1.** Combien faut-il de photons par seconde pour engendrer ce courant? La puissance de rayonnement qui tombe sur la cathode est égale à $7,4 \times 10^{-7}$ W.
- **4. 2.** Quel est le rendement quantique de la cellule, c'est à dire le rapport entre le nombre de photons qui provoquent l'émission d'électrons et le nombre de photons incidents?

On donne: $c = 3 \times 10^8 \,\mathrm{m \cdot s^{-1}}$; $h = 6,62 \times 10^{-34} \,\mathrm{J \cdot s}$; $e = 1,6 \times 10^{-19} \,\mathrm{C}$; $m_e = 9 \times 10^{-31} \,\mathrm{kg}$.

